

Solving Veloofity Problems

- Remember: The velocity of an object is determined by measuring both the speed and direction in which an object is traveling.
- If the speed of an object changes, then its velocity also changes.
- If the direction in which an object is traveling changes, then its velocity changes.
- A change in either speed, direction, or both causes a change in velocity.
- You can use $v=d / t$ to solve velocity problems. The velocity of an object in motion is equal to the distance it travels per unit of time in a given direction.

You Iry It

1. An airplane flies 525 kilometers north in 1,25 hrs.

- Position-time graphs

- The graph on the next card represents the story of "The Three Little Pigs." The parts of the story are listed below.
- The wolf started from his house. The graph starts at the origin.
- Traveled to the straw house. The line moves upward.
- Stayed to blow it down and eat dinner. The line is flat because position is not changing.

- Traveled to the stick house. The line moves upward again.
- Again stayed, blew it down, and ate seconds. The line is flat.
9 Traveled to the brick house. The line moves upward.
- Died in the stew pot at the brick house. The line is flat.

spreed-fime gyaphs

- The wolf moved at the same speed toward his first two "visits."
- His third trip was slightly slower.
- Except for this slight difference, the wolf was either at one speed or stopped (shown by a flat line in the speed versus time graph).

Speed-fime graphs

- A speed-time graph displays the speed of an object over time and is based on position-time data.
- Speed is the relationship between distance (position) and time, $v=d / t$.
- For the first part of the wolf's trip in the position versus time graph, the line rises steadily.
- This means the speed for this first leg is constant. If the wolf traveled this first leg faster, the slope of the line would be steeper.

