Structure of Matter

- 3. Each of the more than 100 elements of matter has distinct properties and a distinct atomic structure. All forms of matter are composed of one or more of the elements. As a basis for understanding this concept:
 - a. Students know the structure of the atom and know it is composed of protons, neutrons, and electrons.
 - Students know that compounds are formed by combining two or more different elements and that compounds have properties that are different from their constituent elements.
 - Students know atoms and molecules form solids by building up repeating patterns, such as the crystal structure of NaCl or long-chain polymers.
 - d. Students know the states of matter (solid, liquid, gas) depend on molecular motion.
 - e. Students know that in solids the atoms are closely locked in position and can only vibrate; in liquids the atoms and molecules are more loosely connected and can collide with and move past one another; and in gases the atoms and molecules are free to move independently, colliding frequently.
 - Students know how to use the periodic table to identify elements in simple compounds.

1. Draw the general structure of an atom. Draw a structure of a compound.	Chp 12/sect 2
2. Define proton, neutron, electron, compound. element.	
3. Draw a "cube of each": solid, liquid, gas and show how their atomic struct	ure is different.

- 4. Complete "Math in Science" work sheet/
- 5. Complete: ALL definitions under the matter review notes
- 6. Complete "Atomic Math Challenge"

Matter Review

Notes

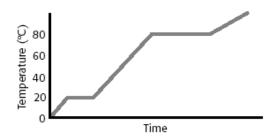
Read the following section highlights. Then, in your own words, write the highlights in your ScienceLog.

- The states of matter are the physical forms in which a substance can exist. The four most familiar states are solid, liquid, gas, and plasma.
- All matter is made of tiny particles called atoms and molecules that attract each other and move constantly.
- A solid has a definite shape and volume.
- A liquid has a definite volume but not a definite shape.
- A gas does not have a definite shape or volume. A gas takes the shape and volume of its container.
- Pressure is a force per unit area. Gas pressure increases as the number of collisions of gas particles increases.
- Boyle's law states that the volume of a gas increases as the pressure decreases if the temperature does not change.
- Charles's law states that the volume of a gas increases as the temperature increases if the pressure does not change.
- Plasmas are composed of particles that have broken apart. Plasmas do not have a
 definite shape or volume.

Notes

Read the following section highlights. Then, in your own words, write the highlights in your ScienceLog.

- A change of state is the conversion of a substance from one physical form to another. All changes of state are physical changes.
- Exothermic changes release energy. Endothermic changes absorb energy.
- Melting changes a solid to a liquid. Freezing changes a liquid to a solid. The freezing point and melting point of a substance are the same temperature.
- Vaporization changes a liquid to a gas. Boiling occurs throughout a liquid at the boiling point. Evaporation occurs at the surface of a liquid, at a temperature below the boiling point.
- Condensation changes a gas to a liquid.
- Sublimation changes a solid directly to a gas.
- Temperature does not change during a change of state.

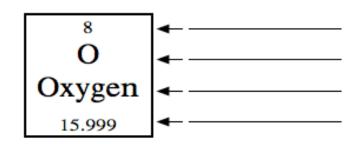

-	0 0	
Define:	8. freezing	For each pair, explain the differences in their
1. States of mater	9. endothermic	meanings:
2. solid	10. exothermic	1. exothermic/endothermic
3. liquid	11. vaporization	2. Boyle's Law / Charles's Law
4. gas	12. boiling	3. Evaporation/boiling
5. plasma	13. evaporation	_
6. change of state	14. condensation	
7. melting	15. sublimation	

MATH IN SCIENCE

22. Kate placed 100 mL of water in five different pans, placed the pans on a windowsill for a week, and measured how much water evaporated. Draw a graph of her data, shown below, with surface area on the *x*-axis. Is the graph linear or non-linear? What does this tell you?

Pan number	1	2	3	4	5
Surface area (cm²)	44	82	20	30	65
Volume evaporated (mL)	42	79	19	29	62

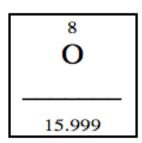
23. Examine the graph below, and answer the following questions:


a. What is the boiling point of the substance? What is the melting point?

b. Which state is present at 30°C?

 $\textbf{c.}\,$ How will the substance change if energy is added to the liquid at 20°C?

The Atoms Family Atomic Math Challenge


Name _____

Atomic number equals
the number of

or _____

Atomic mass equals
the number of

Atomic # = _____ Atomic Mass = _____ # of Protons = ____ # of Neutrons = ____ # of Electrons = ____ Zinc 65.39

Atomic # = _____ Atomic Mass = _____ # of Protons = _____ # of Neutrons = _____ # of Electrons = _____ 3 Li —————

Atomic # = _____ Atomic Mass = _____ # of Protons = ____ # of Neutrons = ____ # of Electrons = ____

```
Silicon
28.086
```

Atomic # = _____ Atomic Mass = _____ # of Protons = ____ # of Neutrons = ____ # of Electrons = ____ 5 **B** ------

Atomic # = _____ Atomic Mass = _____ # of Protons = ____ # of Neutrons = ____ # of Electrons = ____ 35 Bromine 79.904

Atomic # = _____ Atomic Mass = _____ # of Protons = _____ # of Neutrons = _____ # of Electrons = _____