The Properties of Matter

Chapter 2: V is for Volume! Lecture 2

V is for Volume

- Briefly, volume is the <u>amount of space</u> something takes up.
- Whether it's a speck of dust or Jupiter, all matter takes up space.

Measuring the volume of...

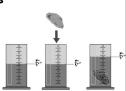
Liquids

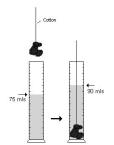
- v Graduated cylinder
- v Displacement method
- Measured in liters (L) & milliliters (mL)

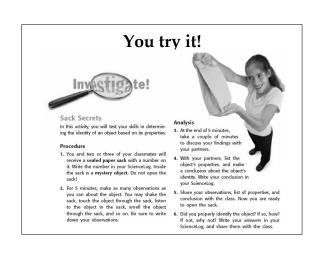
Solids:

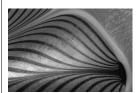
v Length x width x height

Gases:


v Since a gas expands to fill its container, if you know the volume of the container, you know the volume of the gas.




- Density The mass of a substance divided by its volume
- Density is an important physical property.
 Density is the mass of a substance per unit volume.
- Volume is the amount of space an object occupies.


<u>Extensive</u> - Properties that do depend on the amount of matter present.

- √ <u>Volume -</u>
- A measurement of the amount of space a substance occupies.
- v *Length

How can you describe them if you didn't know what they were?

- Describing objects by using
- v size
- v shape
- v color
- v <u>texture</u>
- v uses an object's properties.

Properties

- v It doesn't matter what your object was, everyone used similar descriptions. What were some of the properties you listed about your object?
- Size, Weight & Mass, Shape, Odor, Sound, etc.
- After opening your bag, you were able to list even more properties such as color, texture, etc.

Common Physical properties

- Physical properties can be observed or measured <u>without</u> changing the identity of the matter.
- Basically, properties you notice when using one of your five senses:
 - v Feel mass, volume, texture
 - v Sight color
 - v Hear
 - v Smell
 - v Taste

Physical properties of matter are categorized as either: Intensive or Extensive:

- Intensive Properties that do not depend on the amount of the matter present.
- o Color & Odor
- Luster: How shiny a substance is.
- Malleability The ability of a substance to be beaten into thin sheets
- <u>Ductility</u> The ability of a substance to be drawn into thin wires.

- <u>Conductivity</u> The ability of a substance to allow the flow of energy or electricity.
- <u>Hardness</u> How easily a substance can be scratched.
- Melting/Freezing Point The temperature at which the solid and liquid phases of a substance are in equilibrium at atmospheric pressure.
- <u>Boiling Point</u> The temperature at which the vapor pressure of a liquid is equal to the pressure on the liquid (generally atmospheric pressure).

More Physical Properties

Density is a very important property.

- v It is the amount of matter in a given volume.
- v <u>Density =</u> Mass / Volume

 $D = \frac{m}{V}$

More Physical Properties		
Physical property	Definition	Example
Thermal conductivity	The ability to transfer thermal energy from one area to another	Plastic foam is a poor conductor, so hot chocolate in a plastic- foam cup will not burn your hand.
State	The physical form in which a substance exists, such as a solid, liquid, or gas	Ice is water in its solid state.
Malleability (MAL ee uh BIL uh tee)	The ability to be pounded into thin sheets	Aluminum can be rolled or pounded into sheets to make foil.
Ductility (duhk TIL uh tee)	The ability to be drawn or pulled into a wire	Copper is often used to make wiring.
Solubility (SAHL yoo BIL uh tee)	The ability to dissolve in another substance	Sugar dissolves in water.
Density	Mass per unit volume	Lead is used to make sinkers for fishing line because lead is more dense than water.

Properties of all objects

- Objects take up space.
- All objects take up space.
- Your computer is taking up space on the desk.
- You are taking up space on the chair.

Properties of Matter

- Remember all objects take up space and have mass.
- You use your sense of taste and smell to tell the difference between spinach and an orange.

Physical properties-

- The measurement of mass and other characteristics that can be seen without changing how that object looks are its physical properties.
- When you look at oranges, you know that they are oranges because of their color, shape, and smell.
- Mass, color, shape, volume, and density are some physical properties.
- The answers to the question about the present are physical properties.

A property describes how an object looks, feels, or acts.

Properties are constantly changing...

- Matter is constantly changing.
 - Ice in your soda melts, glass breaks, paper is ripped.
- When ice in your soda melts where does it go?
- What does it become?

Physical vs. Chemical Properties

- v Physical properties: observe without changing the identity of the substance
- Chemical properties: observe only when the identity changes
- v How do you know if it is chemical or physical?
 - v If it CHanges, it's CHemical

Chemical properties

- A common chemical property is reactivity.
 - v Reactive to oxygen
 - v Reactive to air
 - v Reactive to water...
- Notice that chemical properties aren't EASY to observe, unlike physical properties.

Substance	Physical property	Chemical property		
Helium	less dense than air	nonflammable		
Wood	grainy texture	flammable		
Baking soda	white powder	reacts with vinegar to produce bubbles		
Powdered sugar	white powder	does not react with vinegar		
Rubbing alcohol	clear liquid	flammable		
Red food coloring	red color	reacts with bleach and loses color		
Iron	malleable	reacts with oxygen		
Tin	malleable	reacts with oxygen		

Physical Changes:

v Changes in matter that do not alter the identity of the matter itself. Changes that do NOT change the identity of the substance.

More Examples of Physical Changes

- Freezing water for ice cubes
- Crushing an aluminum can
- Sanding a piece of wood
 Cutting your hair
- Bending a paper clip
 Mixing oil and vinegar

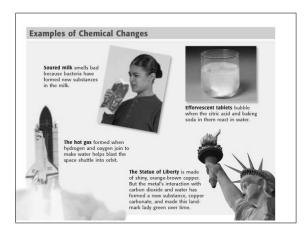
Physical Changes:
_You may or may not be
able to undo a physical
change.

- · For example:
- · 1. Size 2. Shape
- · 3. State
 - solid liquid gas
- 4. Dilutions
- The water doesn't turn into soil or macaroni.
- · It remains water.
- If it did change into soil or macaroni, your drink would taste terrible and you would have an example of a chemical change
- v If you remember, ice is water in the solid state
- When you drop the ice cube into the liquid, it begins to melt because the temperature is higher than that of the ice cube.
- v It's like putting a snowman on your front lawn in July.
- v The ice cube becomes liquid water.
- v This is an example of a physical change.
- v The solid water turned to liquid water.

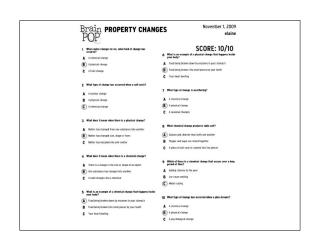
Chemical Changes

- Chemical changes do alter the identity of a substance
- In other words, a chemical change is when something changes into an entirely different substance
- v For example:
 - v Iron rusting
 - v Wood burning
 - v Copper turning to brass
 - v Baking a cake
 - v spoiled milk

THESE PIPES ARE IN THE MIDDLE OF CHEMICAL CHANGES AS THEY RUST.


Chemical properties-

- These are properties that can only be observed by changing the identity of the substance.
- A piece of paper burns and turns to a black substance.
- After the flame goes out you can no longer burn the new substance.
- The chemical properties have been changed.



- Milk needs to be in the refrigerator or else it will go bad.
- If you've ever seen or smelled spoiled milk, it is not a pretty sight.
- The milk gets a sour odor and becomes lumpy.
- Unlike physical changes, you cannot reverse chemical changes
- You can melt ice to get water and freeze that water to get ice again.
- You cannot make milk unspoiled.

Brainpop

v Property changes!

v Common Errors

- *Ice melting, water freezing, water evaporating, and steam condensing are all examples of a state change.
- ν *These are <u>physical</u> changes, not chemical.
- *Diluting a solution is a <u>physical</u> change, even if the color becomes more faint.

Melting is a physical change.

The Take Home Message

- State changes, like melting, freezing, boiling, are all PHYSICAL changes.
- The substance remains the same substance, it just changes what STATE it is in.
- We'll talk about this next time.