Name:	Pd Sci N	umber Day	4:Chemical	Reactions	/52pts 2pts	; ec print
#5 Reactions: Chemica	al reactions are proc	esses in which atc	ms are rearrange	d into different	combinations of molecu	lles.
a. Reactant atoms & mo	plecules interact to for	orm	with di	ifferent chemic	al properties.	
b. The idea of atoms ex	plains the conservat	ion of matter: In cl	nemical reactions	the	of atoms stays the	e same no matter
how they are arranged,	so their total mass s	stays the same.				
c. Chemical reactions u	sually	heat c	r	heat		
d	processes inclu	de freezing & boil	ng, in which a ma	terial changes	form with no chemical re-	eaction.
e. Know how to determi	ne whether a solutio	n is acidic, basic,	or neutral.	1	(nt opph; //	7
Vocabulary - Write the 1. Chemical Reaction_	definitions for the fo	llowing terms:			⁷² pt each74	
2. Reactants						
3. products:						
4. 4 phases of matter:						
1	the state	e in which matter h	as a definite volur	me and shape		
2	the state	e in which matter h	as a definite volur	me but takes th	ne shape of tis container	
3	a state i	n which matter cha	anges in volume a	ind shape		
4	a state t	hat goes not have	a definite volume	and shape, bu	it whose particles have b	oroken apart
5. physical property:						
6. chemical property						
7. physical change:						
8. chemical change:						
Are state changes (ie fr	eezing, melting) exa	mples of chemical	or physical chang	ge? Any state	change is a PHYSICAL	CHANGE! This
is because the substant different states (solid an	ce is still the same b id gas), but they are	etore and after, it l still water. Sublim	nas just changed i ation, condensatic	its shape. For e on, freezing, m	example, ice and water verting, evaporation	vapor are two

all are physical changes.

Physical versus Chemical PROPERTIES: Elements, substances, & compounds have both physical & chemical properties. **Physical properties** are those that can be described using the senses & can be determined without destroying the object. **Chemical properties** describe how a substance reacts with another substance & the original is changed into something else. Classify each term as a physical (**P**) or chemical (**C**) property

density	reacts with acid	hardness	flammability	½ pt each:	
taste	reacts with oxygen	odor	melting point	/'	
color	reacts with a base	luster	neutralizes a base		
	Water boils at 100 ⁰ Celcius		Vinegar will react with	baking soda.	

Physical versus Chemical CHANGES: In a **physical change**, the original substance still exists, it has only changed form. These include all state changes. In a **chemical change**, a new substance is produced. Chem. changes always includes a change in energy & a phys. change. Chemical reactions involve chemical changes. Write **P** for physical change or **C** for chemical change.

glass breaking	cutting grass	separating sand from gravel	½ pt each:
corroding metal	burning leaves	fireworks exploding	/6
burning toast	dying your hair	water evaporating from a pond	
whipping cream	dry ice sublimating	freezing a Capri Sun to make it a slush	nie
spoiling/rotting food			

Chemical Reactions Involve Energy Change: In a chemical reaction, energy is usually liberated (released) or absorbed in the form of **HEAT**. State whether each of the following equations is an endothermic change or exothermic.

M	ectrolysis of Wa ethane Combus	ater – 2H ₂ O + stion – CH ₄ +	$\begin{array}{c} \text{Energy} \rightarrow 2H_2\\ 2O_2 \rightarrow CO_2 + 2\end{array}$	+ O ₂ H ₂ O + ene	erqy				
Wha This Wha This Definitions • Wha	t does "liberat would be an t does "absork would be an t is an ion?	e" heat mea)" heat mear	n? To liberate h reaction 1? To absorb hea (head	neat means on (heat le at means t at in) reac	s aves) This rea o ction. This rea	action would f ction would fe	he eel el	eat. heat.	/ 3 pts
• Wha	t is a covalent b	ond?							
• Wha	t is an ionic bon	d?							
Define: What	is the law of c	onservation	of mass (matte	r)?					
The left and Below is an The first on	right sides of example of e (2AI) is dor 2AI	the equation a <i>balanced</i> ne for you. +	ns have the sam d equation. We 3NiBr ₂	$\frac{1}{1}$ is stuff	just in differ ame & num 2AIBr ₃	ent combina Iber of eacl +	tions!!!! n elemer 3Ni	nt below	the molecule.
	2 aluminum								
total mass s total mass s	stayed the sa stayed the sa 2Na Mg + 2KCl	ame. Below ame) or No + $2H_2O \rightarrow$ $Cl_2 \rightarrow Mg$ $O_3 \rightarrow 2KC$	v, next to each of the equation NaOH + H ₂ Cl ₂ I + 3O ₂	ו chemic chemic on is unb	al equation balanced.	, write Yes $H_2 + O_2$ $NaOH + O_2$ $N_2 + H_2$	if the eq $\frac{1}{2}$ pt ea \rightarrow H ₂ O + MgCl ₂ \rightarrow NH ₃	uation is =/4 → NaCl	+ MgOH
	S ₂ +	$3O_2 \rightarrow 2SO$ Acids	∪₃ s Bases Neu	trals & t	the pH Sca	C ₂ H ₆ + le Definitio	$O_2 \rightarrow CO$	$J_2 + H_2$)
acid: base: neutral: Label the p	oH scale wit	h the follo	wing terms:	strong a	acid, weak	acid, neutr	al, weal	k base,	strong base.
/ 1	2 3	4	5 6	7	8 9	10	11	12	13

State Exam Examples: Circle the answer

1. Copper (Cu) reacts with oxygen (O) to form copper oxide (CuO). The properties of CuO are *most* likely

Properties of Some Compounds				
Compound	Melting Point	Solubility	Electrical Conductivity in Solution	
Α	801°C	high	yes	
В	398°C	low	yes	
С	20°C	low	no	
D	1,200°C	high	yes	

- a. different from copper or oxygen
- b. similar to both copper and oxygen
- c. similar only to copper
- d. similar only to oxygen

Chemical Reactions

1	$2Na + 2H_2O \rightarrow NaOH + H_2$
2	$H_2 + O_2 \rightarrow H_2O$
3	$Mg + Cl_2 \rightarrow MgCl_2$
4	$NaOH + MgCl_2 \rightarrow NaCl + MgOH$

2. The following equations represent chemical reactions. Which equation shows that the total mass during a chemical reaction stays the same?

a. 1 b. 2 c. 3 d. 4

3. Which of the following forms of energy is released or absorbed in most chemical reactions?

- a. light energy b. electrical energy
- c. sound energy d. heat energy

4. Which of the following describes signs that a chemical change is occurring?

- a) A substance changes shape or state.
- b) A substance gives off or absorbs heat.
- c) A substance is dense and malleable.
- d) A substance is flammable and reactive.

5. As a sample of water turns to ice,

- a. new molecules are formed.
- b. the mass of the sample is increased
- c. the arrangement of the molecules changes
- d. energy is absorbed by the molecules

6. The table below shows the pH and reaction to litmus of four body fluids. These data indicate that gastric juice is

a. very acidic	b. very basic
c. positively charged	d. negatively charged

Body Fluid	рН	red litmus	blue litmus
Blood	7.4	turns blue	no change
Bile	8.2	turns blue	no change
Saliva	6.8	no change	turns red
Gastric Juice	1.7	no change	turns red

7. Which of the compounds in the table is most likely a covalent compound?

a. compound A	b. compound B
c. compound C	d. compound D

8. Under what conditions are particles of covalent compounds formed?

a. oppositely-charged ions transfer electrons and form a bond

- b. two or more atoms share electrons
- c. an atom of a noble gas bonds with an atom of a transition metal
- d. two metal atoms form a bond

9. What type of compound increases the number of hydronium ions when dissolved in water?

a. an acid b. a base c. an indicator d. hydrogen gas

10. What factor does the pH scale measure?

- a. the degree of neutralization between acids and bases
- b. the concentration of hydroxide ions in a solution
- c. the number of salt molecules present in a solution
- d. the concentration of hydronium ions in a solution

11. Which solution listed in the table is the most acidic?

pH of Some Solutions		
Solution	рН	
Α	12.89	
В	2.33	
С	12.1	
D	3.50	

a. solution A	b. solution B
c. solution C	d. solution D

Chemical & Physical Properties & States of Matter QUIZ 23. Precious metals in catalytic converters on cars change Multiple Choice: Identify the letter of the choice that best completes harmful carbon monoxide exhaust fumes to harmless ones. the statement or answers the question AND fill in the blank. This is an example of a change. a. physical b. chemical c. characteristic d. Both (a) and (c) 12. Which of the following is NOT a chemical property? c. flammability a. reactivity with oxygen 24.Color, odor, mass, and volume are of an object. b. malleability d. reactivity with acid a. chemical properties c. stationary properties b. physical properties d. inertial properties 13. You accidentally break your pencil in half. This is an example of 25. Flammability, solubility, and reactivity are of a substance. a. a physical change. c. density. a. chemical properties c. stationary properties b. a chemical change. d. volume. b. physical properties d. gravitational properties 14. Which of the following is NOT a physical property of matter? 26. Being able to burn wood is an example of wood's a. ductility b. color c. thermal conductivity d. reactivity to water a. soluble properties. c. physical properties. b. chemical properties. d. ductile properties. 15. During physical changes, matter always retains its 27. When you add bleach to the water while you are b. identity. c. state. d. texture. a. size. washing your clothes, you are encouraging a. conductivity. c. ductility. 16. Which of the following is an example of a physical change? b. a chemical change. d. a physical change. a. a silver spoon tarnishing c. a popsicle melting b. a cake baking in an oven d. a car rusting 28."Paper is white." 17. Two substances that undergo a chemical change This is an example of WHAT PROPERTY? together are with one another. a. physical b. chemical c. personal d. real estate a. ductile c. conductive b. reactive d. soluble 29."Paper is flammable (can burn)." This is an example of WHAT PROPERTY? 18. A favorable chemical property of iron is its a. physical b. chemical c. personal d. real estate a. malleability. c. high melting point. d. non-reactivity with oil and gasoline. b. strength. 30. "Water cannot burn." _19. You are given two samples and are told that one is This is an example of WHAT PROPERTY? plastic and the other is wax. If you had to distinguish between the a. physical b. chemical c. personal d. real estate two using ONLY chemical properties, you could a. hit the samples with a hammer. 31. "Water evaporates" b. burn the samples. This is an example of WHAT KIND OF CHANGE? c. determine the densities of the samples. a. physical b. chemical c. personal d. real estate d. All of the above 32. "Rubbing alcohol evaporates" 20. As you clean the kitchen cupboards, you find an This is an example of WHAT KIND OF CHANGE? unlabeled container of white powder. As you set the container on b. chemical c. personal d. real estate a. physical the countertop, you accidentally spill some of the powder into a cup of vinegar. The mixture fizzes and bubbles, which means that 33. You accidentally drop your cell phone, and it the white powder is breaks in half! This is an example of WHAT KIND OF CHANGE? a. corn starch. b. baking soda. c. flour. d. powdered sugar. a. physical b. chemical c. personal d. real estate 21. The melting of butter when it is left out in a warm room is 34.What scale is used to measure how strong an an example of ACID or a BASE is? a. a physical change. c. a physical property. a. gram scale b. a balance scale c. pH scale b. a chemical change d. a chemical property.

____22. Although the Statue of Liberty is made of copper (originally an orange-brown color), it is green because the copper has interacted with substances in the air to form new substances with different properties. This is an example of a

- a. physical change. c. physical property.
- b. chemical change. d. chemical property.

¹/₂ pt each: ____/17