Chp 14: Lect 3: Chemical Bonding

2 pts ec printing

Part 3: Covalent Bonds, Chemical Formulas, Structural Diagrams

Bond with me			(H
A chemical bond forms when atoms c	or		
For example, in a water molecule, each hydrogen atom sl	nares its single	electron with the	Oxygen
oxygen at the center. This way, all of the atoms are happy			
elements form chemical bonds easily - which is why mos	t matter is four	d in compounds.	
Types of bonds			
There are a couple different types of bonds. 1Bond. Today we are going to just talk	Bond,	2	Bond, 3.
Bond. Today we are going to just talk	about covalent	bonds.	
Covalent Bonds			
What is a covalent bond? A bond formed by COVALE	MI BONDS:		here
	ectrons are shared.	· (()	 to here
. Also, are groups of atoms	Suared.	here	to har
that are held together by covalent bonds in a specific ratio	o & shape.		
A is formed when a	atoms	electron	s. The bonds
between oxygen and hydrogen in a water molecule are co	valent bonds.	There are two cova	lent bonds in a water
molecule, between the oxygen and each of the hydrogen			
covalent bond, electrons are between			
"M" is for Molecule	,	,	
A group of atoms held together by covalent bonds is called	ed a	Water is	a molecule and so is
sugar. Other examples of molecules are methane (CH ₄),	ammonia (NH	${3}$ oxygen (O ₂) ni	trogen (N_2)
	w (1 \11)), on J So n (02), m	.v. 08011 (1 \2).
Single Double Triple Fancy Bonding			
Cometimes stome share more than	one electron (Occasionally they	can share 2 or even 3
1 1 1 1			
H:H :o::o: v::i	and	1	_ bonus.
Chemical Formulas	You	Try It! Chemical	Formulas
Molecules are represented by a		Try It. Chemical	Torridas
. The chemical formula tells you the	Chemical		
of each kind of atom	Formula		
in the molecule. For example, the chemical formula for			
water is H.O. The			
water is H_2O . The 2 indicates there are two hydrogen atoms in the molecule. The chemical	C_6H_6		
formula also tells you that water always contains twice			
as many hydrogen atoms as oxygen atoms.			
XV 1 1 1 1 C 1	NH_3		
Water is a simple molecule, so the formula is pretty			
easy. Let's look at a more complex molecule. Baking			
soda, or sodium bicarbonate, is NaHCO ₃ . That means it			
has: 1 Sodium (Na), 1 Hydrogen (H), 1 Carbon (C), 3	$Al(OH)_3$		
Oxygen (O)	711(011)3		
Structural Diagrams			
The shape of a molecule is also important	$CO(NH_2)_2$		
to its function and properties. For this			
reason, molecules are represented by			
/ \	xx the chance on	d arrangement of a	tome A single bond

which show the shape and arrangement of atoms. A single bond is represented by a bold short line.

Structural Diagram – Take 2

Double and triple bonds are indicated by and lines.

Of course, real molecules are

not flat as shown in a structural diagram. For example, methane - CH₄ - has the shape of a 4-sided pyramid called a tetrahedron.

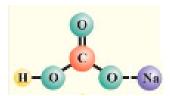
Chemical Formula

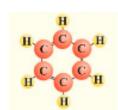
Diagram with | Flat Structural Electrons

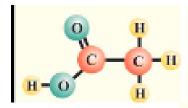
Diagram

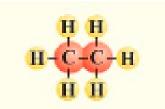
3D Structural Diagram

 CH_4






You Try It! Match the structural diagram with its chemical formula.

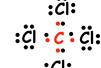

- 1. C₂H₆______ 2. NaHCO₃_____
- $3. HC_2H_3O_2$

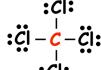
4. C₆H₆ _____

Lewis Dot Molecules

We've already seen how you draw a Lewis dot structure. The dots represent the valence electrons of an atom. We can draw Lewis dot structures for molecules too. Each element forms bonds to reach one of the magic numbers of valence electrons: or

In dot diagrams of a happy molecule, each element symbol has either 2 or 8 dots around it.


Lewis Dot Molecule – Example


Draw the dot diagram for carbon tetrachloride, CCl₄.

- 1. List the elements in the molecule
- 2. Determine how many valence electrons each element has.
- 3. Match the elements so that each atom has 8 (or 2 for H & He) electrons.

Notice that with this molecule, each atom has 8 electrons. The shells are all full!!! Each chlorine atom shares an electron with :Cl carbon. In return, carbon shares its electrons with chlorine.

You can see how the drawing changes & becomes simpler & simpler.

You Try it! Lewis Dot Pg 7 & 9 in your little book.