ABC's of Science Lecture Day 2: Temperature, Volume, Mass 2 ptsec printing

Answer: \qquad

Measuring Temperature
In science, temperature is measured using the \qquad -
temperature scale. The temperature scale is based on the freezing and boiling points of water. The freezing point of water is given the value of
\qquad . The boiling point of
water is labeled at \qquad -
Human body temp is about $37^{\circ} \mathrm{C}$.

Answer: \qquad

In the International System (SI), temperature is measured in The kelvin scale is based on absolute zero, the coldest possible temperature. This temp. corresponds to $-273^{\circ} \mathrm{C}$ $0^{\circ} \mathrm{C}=$
$100^{\circ} \mathrm{C}=$ \qquad

Volume

Have you ever heard someone say "this shampoo gives my hair a lot of volume!!!" What does that mean? Volume means to \qquad . Or, volume is the amount of space occupied by an object. So if someone's hair has a lot of volume that means it is full. It takes up a lot of space. Volume of Solid Rectangular Objects: For solid rectangular objects, the volume is the length x width x height. \qquad . A cubic meter $\left(\mathrm{m}^{3}\right)$ is a unit of volume.
A cubic meter is a very large unit - it contains $1,000,000$ cubic centimeters.
You try it! 4. What is the volume of this solid?
$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

You try it! 5. What is the volume of this solid?

$\mathrm{V}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

Measuring Volume of Liquid Objects

For liquid objects, we use \qquad to measure the volume. In cooking, we may also use measuring cups, teaspoons or tablespoons. The level of a liquid in a graduated cylinder shows the volume of the liquid. A \qquad (L) is a unit that is usually used to express volume. A soft drink bottle is a 2 -liter bottle. For smaller volume measurements, we also use: milliliter (ml), cubic centimeter $\left(\mathrm{cm}^{3}\right) .1$ liter contains 1000 milliliters or 1000 cubic centimeters.

Accuracy is Everything To read the volume of the liquid, note the level at the \qquad of the curve. We call this the

Volume of Liquids

Do these graduated cylinder have the same volume of liquid in them? YES! How can that be??? One is a $100-\mathrm{mL}$ cylinder \& the other is a $50-\mathrm{mL}$ cylinder.
Which one is better to use to measure this liquid?
The smaller one!!! Why? Better Accuracy! The smaller the cylinder, the smaller the increments on the cylinder, which means a more accurate result.

You try it!
What is the volume in ml ?

You try it! What is the volume in ml ?

Volume of Liquids- But look at this! Both of these cylinders have exactly 50 ml of water

Measuring Volume of Solid Irregular Objects

So, how would I measure the volume of an irregular object such as a piece of clay? I can't measure the sides and I can't use a measuring cup. But I CAN still use a graduated cylinder. Simply submerge the object in the graduated cylinder and record the difference in water level. We call this measuring volume by \qquad You will practice it during our lab this week.

Mass Review:

'МОГӘq SIəMSUE

Finding Temperature

Now you try it!

Around the room you will find multiple stations. In table groups, go to the stations and determine the mass, volume and temperatures. Write down your answers here:

Station 1: Mass Determine the mass of the objects on the balances Ball: \qquad paper clip: \qquad Eraser: \qquad large washer: \qquad Small washer: \qquad marble: \qquad	Station 2: Graduated Cylinders Determine the volume of the 5 different liquids in graduated cylinders Cylinder 1: \qquad Cylinder 2: \qquad Cylinder 3: \qquad Cylinder 4: \qquad Cylinder 5: \qquad Cylinder 6: \qquad
Station 3: Displacement Method Determine the volume of the object by using the displacement method rock: \qquad paper clip: \qquad Small washer: \qquad marble: \qquad	Station 4: Measuring for Volume Determine the volume of the objects using your rulers Box 1: \qquad Box 2: \qquad Box 3: \qquad Box 4: \qquad

Video Notes lecture 2:
Video 3: \qquad
\qquad
Video 4: \qquad
\qquad

Video 5: \qquad
\qquad
Video 6: \qquad

Video 7: \qquad
\qquad

Video 8: \qquad
\qquad

