

What is density?

Density describes how much mass is in a given volume of a material.

- Steel has a high density; 7.8 grams of mass per cubic centimeter.
- Aluminum has a lower density; 2.7 grams/ cm ${ }^{3}$.
- Liquids \& gases are matter \& have density too.

What is density?

- Think about the many kinds of matter you come into contact with every day.
- Wood, cement, aluminum, plastic, foam, liquids, steel, etc.
- In solids, we have huge differences.
- A block of steel and a block of aluminum may be the same size, but one has a lot more mass than the other.

Measuring Density

$$
\underset{\left(\mathrm{g} / \mathrm{mL} \mathrm{or} \mathrm{~g} / \mathrm{cm}^{3}\right)}{\text { Densit }} \rightarrow \text { Volume }\left(\mathrm{mL} \text { or } \mathrm{cm}^{3}\right)
$$

- The more matter you place into a defined volume, the denser it becomes
- For example, New York City is DENSELY populated because there are a lot of people in a small area.
- 20 people in an elevator is DENSER than 2 people in an elevator.
- Notice our units... cm^{3}

Lead and Feathers

- Although 100 pounds of feathers may take up much more room than 100 pounds of lead, they both still weigh 100 pounds.
- The steel is heavier for its size, due to the fact that it is denser!!!.
- Thus, a material such as feathers takes up much more room (volume) than a denser material such as steel, for the same mass or weight.

Density of Common Materials

 Steel denstity For example, a steel nail and asteel cube have different amounts of matter and therefore different masses.

- They also have different volumes.
- However, if you calculate density by dividing mass by volume, the result is the same for both the nail and the cube.

Density of Common Materials

Why does density vary?

Densities of Common Substances	
Substance	Density (g'cm')
Meraury	13.60
Lead	11.34
Aluminum	2.70
Bone	1.85
Milk (whole)	1.03
Seavater	1.03
Water	1.00
Ke	0.92
Gasoline	0.73
Coik	0.24

- Solids with low density, such as cork or foam, are often used as cushioning material.
- Low density means there are relatively large spaces between atoms.

Calculating Density: You try it!

Density Problem Examples

- Here are 3 density problems to do...

Follow the video as we do them
1.A student determines the density of manganese to be $5.54 \mathrm{~g} / \mathrm{cm}^{3}$. If a sample had a mass of
3.43 g what was the volume?
2. A cube 5.7 cm on a side has a mass of 630 g . Find the Density!
3. The density of a gas is $0.0043 \mathrm{~g} / \mathrm{cm}^{3}$. Find the mass of $280 \mathrm{~cm}^{3}$ of this gas.

Calculatiing Density

$\underset{\left(\mathrm{g} / \mathrm{mL} \text { or } \mathrm{g} / \mathrm{cm}^{3}\right)}{\text { Density }} \rightarrow \mathrm{D}$

- There are several different ways to find the density of an objects.
- It depends on the shape of the object.

Find mass

- Use a balance
- Units: grams or kg

2. Find volume

- Use a ruler
- Measure all 3 sides: length, width, height
- Units: $\mathbf{c m}^{3}, \mathrm{~m}^{3}, \mathrm{~km}^{3}$
- Use this equation: Volume $=$ length \times width \times height
$V=I \times W \times h$

3. Densit

- Units: $\mathbf{g / \mathrm { cm } ^ { 3 }}$

Irregular Objects

Find mass
2. Find volume

- Displacement method

- Fill a graduated cylinder with water.
- Drop the object in without splashing
water.
- Calculate the change in volume!
- Units: $\underline{m L}, L$

3. Dentiry

- Units: $\mathbf{g} / \mathbf{m L}$

