Lect 4: **Buoyancy &** Density

What is buoyancy? What is the relationship between density & buoyancy?

Will it float or sink?

- The largest ship in the world is the Jahre Viking, an oil-carrying tanker. This super-sized ship is 1,504 feet long and 264 feet wide, longer than 5 football fields laid end-to-end.
- If the Empire State building was laid on its side, the Jahre Viking would be longer by 253 feet!
- Crew members use bicycles to get from place to place on the ship.
- The Jahre Viking is largely constructed of steel, so how can a big, heavy ship like this actually float?

Will it float or sink?

- Let's look at something we' re more familiar with....Soda!
- Write down 2 similarities between
- these two cans. Write down 2 differences.
- Predict what happens when I place a can of regular coke and a can of diet coke into regular tap water.

Will it float or sink?

What is your best guess?? Diet soda will: Regular soda will:

Will it float or sink?

- What did you see?

 The diet coke floats & the regular sinks. Why does the diet float??
 - Regular soda contains 39 grams of sugar.
 - Diet coke contains 100 mg of Nutrasweet.
 - More "stuff" (matter) is crammed into the same amount of space, or VOLUME, and that increases the MASS.
 - The relationship of Mass to Volume is Density.

Buoyant Force

- Why do ice cubes float in water?
- Even though gravity forces an ice cube down, water exerts an upward force on the ice.
- This upward force is called buoyancy.
- All objects submersed a fluid, whether it be a liquid or gas, experience this buoyant force.

Archimedes' Principle

- More than 2000 years ago, a Greek scientist named Archimedes created a law about buoyancy.
- The Archimedes' Principle states that the buoyant force on an object in a fluid is <u>equal</u> to the <u>weight</u> of the displaced fluid
- Example: Suppose a block displaces 250
- mL of water.
- 250 mL of water weighs about 2.5 N. According to the principle, the buoyant force (pushing upwards) on the block is 2.5 N.
- . . 1

Floating & Sinking

- An object will float in a fluid if the buoyant force is equal or greater than the object's weight. A cork floats because the weight is less than the buoyant force.
- An object sinks if the object's weight is greater than the buoyant force.

The Magic Ice Cube

- Trial 1: Ice Cube in water
- Trial 2: Watch as I place a second ice cube in another beaker.
- Describe what happened & write a possible explanation.

The Magic Ice Cube

Explanation:

- This ice cube was placed in a beaker of rubbing alcohol.
- Rubbing alcohol is less dense than water.
- The Ice Cube sank because it was more dense than the alcohol.
- The ice cube's weight was more than the weight of the water it displaced.

	Brain BUOYANCY	April 18, 2010 elaine
How did	What is the same of the force that keeps you alloat?	SCORE: 10/10 6 What determines whether an object will float or slok?
you do??	Bergenov Bergenov C Density	Its size Its values, relative to the mass of the liquid ITs in Its values, relative to the destity of the liquid ITs in
	2 What is an object's booyancy if it Hoots in nater? A Hesplac B Hespla C Packine	 The second a cube is a backet of water, the amount the water first finals is equal to: A the values of water diplaced by the cube B The mass of the cube.
	3 What is an eldent's beaugency if it sinks in water? (a) Regulate B Restal	C The weight of the number 8 Compared with the molecules within a freshwater lake, the molecules of a barry above and: A Father sport
	C Peakive d If an object meltiter sinks nor Bauts in water, what is its buryowers? A Heysthe	Conser together C Equally close together Mann do you calculate an edject's density?
	By Neutral C Pesitive Mitch one of these has meetral booyuncy?	Break it is haf B Chicle its weight by its height C Olivice its mass by its volume
	A Abeat B Affan C Areak	10 Which at these is denses? A Astern of paper B Atrick C Actual of altrogen

Some Problems to do:

- 1. Find the density of a substance with a mass of 5kg and a volume of 43 m³
- 2. Suppose you have a lead ball with a mass of 454g. What is its volume? (density of lead is: 11.35 g/cm³)
- 3. What is the mass of a 15mL sample of mercury? (density of mercury is: 13.55 g/cm³)
- 4. A block of pine wood has a mass of 120g and a volume of 300 cm³. What is the density of wood?

Answers • 1. D = M/V $D = 5 kg / 43 m^3$ Which equals: 0.12 kg/m³ • 2. Volume: V = M/D $= 454 g / 11.35 g/cm^3 = 40 cm^3$ • 3. Mass: M = D × V M = 13.55 g/mL × 15 mL = 203 g • 4. D = M/V $= 120g / 300 cm^3 = 0.4 g/cm^3$