Chp 6: Lect 7: Newton's Second Law of Motion
 Acceleration \& Force

1 ptec printing

Newton's Second Law of Motion: Newton's first law says that a force is needed to change an object's motion. What kind of change happens? \qquad ! What is acceleration? The rate at which \qquad changes over \qquad .

Predict whether the following are true or false.

- If you slow down on your bike, you are accelerating.
- If you ride your bike at constant speed, you cannot accelerate.
- Changing the speed and changing the direction of your bike are both examples of acceleration.

Acceleration: going fast??? This is where it gets tricky... we typically think of acceleration as going fast. Remember that a change in velocity could be a change in speed, a change in direction, or both. So if you are accelerating, it means you are changing speed (going faster or slower) or direction. A decrease in speed is called

Think about it this way... What happens when you coast down a long hill on your bike or board? At the top of the hill, you move slowly. As you go down the hill, you move faster \& faster - you accelerate! If your speed increases by 1 mph each second, then your acceleration is 1 mph per second.

Example of Acceleration	How Velocity Changes
A plane taking off	
A car stopping at a stop sign	
Driving around a corner	

$$
\text { Acceleration }=\frac{\text { find velocily }- \text { inilial velocily }}{\text { time }}
$$

How do you calculate acceleration?

Example \#1: In a summer storm,	Example \#2: You are riding your the wind is blowing with a bike downhill at a speed of 15	Example \#3: At point A, a runner is jogging at $3 \mathrm{~m} / \mathrm{s}$. Twenty velocity of $8 \mathrm{~m} / \mathrm{s}$ north.
Suddenly, in 3 seconds, the wind's velocity is $23 \mathrm{~m} / \mathrm{s}$ north. Five seconds later, seconds later, at point B on a What is the acceleration in the hind yourself traveling 25 hill, the jogger's velocity is now 1 $\mathrm{~m} / \mathrm{s}$ west. What is your acceleration	m / s. What is the jogger's acceleration from point A to point B?	

Newton's Second Law of Motion: The second law says that the acceleration of an object produced by a force is directly proportional to the magnitude of the force, the same direction as the force, and inversely proportional to the mass of the object. What the heck????

Newton's Law \#2: Another way to phrase it: force acceleration, \& mass acceleration increases, force acceleration decrease, force
\qquad
\qquad acceleration. As mass or
\qquad . As mass or
\qquad .
What does this mean, really? Picture

Force $=$ mass \times acceleration a trip to Costco. After grabbing a hot dog or piece of pizza, you grab a cart \& start shopping. At first, the cart is nice \& light, and fun to drive around \& pretend to race people. By the time you're done shopping, what does the cart look like? FULL!!!! How does it feel to move it? HARD! It takes \qquad force to accelerate

$$
F=m a
$$

F=ma

THE MORE FORCE... THE MORE ACCELERATION
\qquad mass.

Force of hand accelerates the brick	»It takes one hand to push the brick.	Twice the force on twice the mass gives the same acceleration	»lf you have twice the mass, it takes twice the force to move it at the same acceleration.
Twice as much force produces twice as much acceleration	»If you apply twice the force by using two hands, the acceleration increases by two.	The same force accelerates 2 bricks $1 / 2$ as much	»But if you push two bricks with the same force, they accelerate half as fast.

Newton's Law \#2 \& Falling Objects: Remember what you learned about the rate of acceleration for falling objects? All falling objects fall to the Earth with the same acceleration... $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Does more mass make an object fall faster? No, the acceleration is always \qquad . Solet's see how this works... An object is in free fall if it is accelerating due to the force of gravity \& no other objects are acting on it. A ball dropped off a cliff is in free fall until it hits the ground. Objects in free fall accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ on Earth.

