Speed Lab 1: Bouncy Balls

Bounce the tennis ball as many times as you can in 30 seconds. Record the results as trial 1 in the table below. Repeat 3 times, then calculate the average of all 3 trials. Repeat with the other types of balls.

	Trial 1	Trial 2	Trial 3	Average
Tennis Ball				
Racquetball				
Golf Ball				
Ping Pong Ball				

1. What was your average bounce speed for a tennis ball? \qquad
2. What was your average bounce speed for a racquetball? \qquad
3. What was your average bounce speed for a golf ball? \qquad
4. What was your average bounce speed for a ping-pong ball? \qquad
5. Which ball can you bounce the fastest? \qquad

Speed Lab 2: Strenuous Stairs

How fast can you run up the stairs \& back? Choose 1 person only from your pair and time how long it takes for them to run from the very bottom to the very top of the stairs, and back.
RULE: you must touch every step, and no skipping or jumping.
Complete 3 trials, fill in the table below and calculate the average speed.

Speed Formula
Trial
:---:
2
3
Average

1. Was one trial faster than another? \qquad if so, explain why. If not, why not?
\qquad
2. How does average speed differ from instantaneous speed?
3. Did your velocity and/or acceleration change during this part? Explain.
\qquad
\qquad
\qquad
\qquad

Lab: Gillum's Go-getters!

How speedy are your classmates? Five students from this class are going to run 100-meter sprints.
Their times will be recorded by $5 \underset{\text { Red }}{5} \underset{\text { Orange }}{20-m e t e r ~ i n t e r v a l s . ~ T h e ~ r e s t ~ o f ~ t h e ~ c l a s s ~ w i l l ~ c h e e r ~ o n ~ t h e ~ r u n n e r s!~}$

	Runner 1		Runner 2		Runner 3		Runner 4		Runner 5	
Distance (meters)	Time (s)	Speed (m/s)	Time (s)	$\begin{aligned} & \text { Speed } \\ & (\mathrm{m} / \mathrm{s}) \end{aligned}$	Time (s)	Speed (m/s)	Time (s)	Speed (m/s)	Time (s)	Speed (m/s)
0										
20										
40										
60										
80										
100										

Data Analysis

1. Calculate the speed for each runner at each meter mark listed above. Record above.
2. Which runner was the fastest?
a. What was their acceleration during the last 40 meters?
3. Which runner was the slowest?
a. What was their acceleration during the last 40 meters?
b. Did this runner maintain a constant speed? How do you know?

Did this runner maintain a constant speed? How do you know?
4. Which runners accelerated during the race? \qquad
5. Which runners decelerated during the race? \qquad
6. Do you think this data is accurate? Explain.

Position-Time Graph: Make a position-time graph of all 5 runners. Each runner will be a different line color-coded according to the color listed on the previous page.

Speed-Time Graph: Make a speed-time graph for only the fastest runner. You will need to calculate their speeds at each of the 10 -meter marks.

