LECT 3: GRAPHING & MOTION

1 pt ec printing

Now consider a car that has a changing velocity. It is not moving at a constant rate, but getting faster by the second. What would this graph look like?

t=0s1s 2s	3 s	4 s	5 s
pos.=0m 2m 8m	18 m	32 m	50 m

You Try It: Graphing Position Vs. Time #3

What would the graph look like for a car that traveled 10 m in the 1^{st} second, 15 m by the 2^{nd} second, 25 by the 3^{rd} second, and 40 m by the 4^{th} second?

You Try It: Graphing Speed Vs. Time #1

Maria walks at a constant speed of 6 m/s for 5 seconds. Then, she runs at a constant speed of 10 m/s for 5 seconds. Create a speed-time graph using her data.

Speed Vs. Time - Changing Speed

As we know, most objects don't move at a	constant speed. If a speed vs. time graph slopes up, then the speed is	If it
slopes down, then the speed is	If the graph is horizontal, then the object is moving at a	speed.

Putting it All Together

- 1. Which runner won the race?
- 2. Which runner stopped for a rest?
- 3. How long did he stop for?
- 4. How long did Bob take to complete the race?
- 5. Calculate Albert's average speed.