## What is density?

Think about the many kinds of matter you come into contact with every day. Wood, cement, aluminum, plastic, foam, liquids, steel, etc. In solids, we have huge differences. A block of steel and a block of aluminum may be the same size, but one has a lot more mass than the other. Density describes how much $\qquad$ is in a given $\qquad$ of a material. Steel has a high density; 7.8 grams of mass per cubic centimeter. Aluminum has a lower density; $2.7 \mathrm{grams} / \mathrm{cm}^{3}$. Liquids \& gases are matter \& have density too.


## Measuring Density

The more matter you place into a defined volume, the $\qquad$ it becomes. For example, New York City is DENSELY populated because there are a lot of people in a small area. 20 people in an elevator is DENSER than 2 people in an elevator. Notice our units...cm ${ }^{3}$
Which one is denser?
If each box has the same volume, and each ball has the same mass, which box would weigh more? Why? Which weighs more? 100 pounds of lead or 100 pounds of feathers?

## Lead and Feathers

Although 100 pounds of feathers may take up much more room than 100 pounds of lead, they both still weigh $\qquad$ The steel is heavier for its size, due to the fact that it is denser!!!
 Thus, a material such as feathers takes up much more room (volume) than a denser material such as steel, for the same mass or weight.

## Density of Common Materials

Density is a property of materials - independent of shape or quantity. For example, a steel nail and a steel cube have different amounts of matter and therefore different masses. They also have different volumes. However, if you calculate density by dividing mass by volume, the result is the same for both the nail and the cube. Solids that are $\qquad$ , such as steel, typically have $\qquad$ density. High density means there are many atoms per cubic centimeter. materials typically have $\qquad$ density. Solids with low density, such as cork or foam, are often used as cushioning material. Low density means there are relatively large spaces between atoms.
Why does density vary? The density of a material depends on two things:

1. the $\qquad$ of each atom or molecule
2. on $\qquad$ the atoms are packed A diamond is made of carbon atoms and has a density of $3,500 \mathrm{~kg} / \mathrm{m} 3$. The carbon atoms in diamonds are closely packed.

## Why does density vary?

Paraffin wax is mostly carbon, but the density of paraffin is only $870 \mathrm{~kg} / \mathrm{m} 3$. The density of paraffin is low because the carbon atoms are mixed with hydrogen atoms in long molecules that take up a lot of space.

## Calculating Density Problems: Follow the video as we do them

| Here are 3 density problems to do... <br> 1.A student determines the density of <br> manganese to be $5.54 \mathrm{~g} / \mathrm{cm}^{3}$. If a <br> sample had a mass of 3.43 g what was <br> the volume? |  |
| :--- | :--- |
| 2. A cube 5.7 cm on a side has a mass <br> of 630 g . Find the Density! |  |
|  |  |
| 3. The density of a gas is 0.0043 <br> $\mathrm{~g} / \mathrm{cm} 3$. <br> this gas. |  |


| Object | Method | You Try It! |
| :---: | :---: | :---: |
| Cube or Rectangular Prism | 1. Find mass <br> - Use a <br> - Units: $\qquad$ $\qquad$ or kg <br> 2. Find volume <br> - Use a ruler <br> - Measure all 3 $\qquad$ : length, width, height <br> - Units: $\qquad$ $, \mathrm{m}^{3}, \mathrm{~km}^{3}$ <br> - Use this equation: $\text { Volume }=\text { length } \times \text { widh } \times \text { heigh }$ $V=l \times w \times h$ <br> 3. Density = mass / volume <br> - Units: | Wood Block |
| Cylinder | 1. Find mass <br> 2. Find volume <br> - Use a ruler <br> - Measure the height \& $\qquad$ <br> - Divide the diameter in half to find the $\qquad$ <br> - Units: $\mathrm{cm}^{3}, \mathrm{~m}^{3}, \mathrm{~km}^{3}$ <br> - Use this equation: <br> Volume of a oylinder $=3.14 \times$ radius $^{2} \times$ height $V=\pi r^{2} h$ <br> 3. Density = mass / volume <br> - Units: $\mathrm{g} / \mathrm{cm}^{3}$ | Wood Cylinder |
| Irregular Object | 1. Find mass <br> 2. Find volume $\qquad$ method $\qquad$ r. <br> - Drop the object in without splashing water. <br> - Calculate the change in volume! <br> - Units: $\qquad$ , L <br> 3. Density = mass / volume <br> - Units: | Two Plastic Bears |

Finding Density Video
Density = $\qquad$ /volume How $\qquad$ something is.

Volume $=$ amount of $\qquad$ something takes up $=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ OR if we can't do that we can use the displacement or $\qquad$ method. It is measured in milliliters $(\mathrm{mL})$ or $\mathrm{cm}^{3}$

Mass = how much $\qquad$ something is made of, and it is measured in grams (g)
Write down the notes from calculating the rectangular objects:
Measuring for volume_: $\mathbf{L}=$ $\qquad$ Volume $=$ $\qquad$
Density $=\mathbf{g} / \mathbf{m l}=$ $\qquad$ 1 $\qquad$ $\mathrm{g} / \mathrm{ml}$

Rock: mass = $\qquad$ divided by volume= $\qquad$ (using the displacement method) $\qquad$ $=$ $\qquad$ ml
Density = $\qquad$ g/ $\qquad$ mL

Density of the rock $=$ $\qquad$ $\mathrm{g} / \mathrm{ml}$
Which density is more- the rectangle or the rock? $\qquad$
Which would you hypothesize would float \& why?? $\qquad$

## Buoyancy \& Density Lect 4: What is bupyancy? What is the relationship between density \& bupyancy?

California Content Standards \#8. Density and Buoyancy: All objects experience a buoyant force when immersed in a fluid.
a. Students know density is mass per unit volume.
b. Students know how to calculate the density of substances (regular and irregular solids and liquids) from measurements of mass and volume.
c. Students know the buoyant force on an object in a fluid is an upward force equal to the weight of the fluid the object has displaced.
d. Students know how to predict whether an object will float or sink.

Video: Eureka!!! Buoyancy! Take notes: $\qquad$

## Will it float or sink?

The largest ship in the world is the Jahre Viking, an oil-carrying tanker. This super-sized ship is 1,504 feet long and 264 feet wide, longer than 5 football fields laid end-to-end. If the Empire State building was laid on its side, the Jahre Viking would be longer by 253 feet! Crew members use bicycles to get from place to place on the ship. The Jahre Viking is largely constructed of steel, so how can a big, heavy ship like this actually float?



Let's look at something we're more familiar with....Soda!
Write down 2 similarities between these two cans.
Write down 2 differences.
Predict what happens when a can of regular coke and a can of diet coke are placed into tap water.
Hypothesis:
What did you see?
What happened and why?
More "stuff" (matter) is crammed into the same amount of space, or VOLUME, and that increases the MASS. The relationship of Mass to Volume is Density.

## Video: Density \& Buoyancy! Take notes:

$\qquad$

## Buoyant Force

Why do ice cubes float in water? Even though gravity forces an ice cube down, water exerts an upward force on the ice. This upward force is called buoyancy. All objects submersed a fluid, whether it be a liquid or gas, experience this buoyant force. The buoyant force exists because of pressure differences in fluids. In any fluid, the greater the depth, the greater the pressure. In the $2^{\text {nd }}$ picture, a thin plank of wood has been pushed underwater.


Archimedes' Principle: More than 2000 years ago, a Greek scientist named Archimedes created a law about buoyancy. The Archimedes’ Principle states that the buoyant force on an object in a fluid is equal to the weight of the displaced fluid. Example: Suppose a block displaces 250 mL of water. 250 mL of water weighs about 2.5 N . According to the principle, the buoyant force (pushing upwards) on the block is 2.5 N .


## Floating \& Sinking

An object will float in a fluid if the buoyant force is equal or greater than the object's weight. A cork floats because the weight is less than the buoyant force. An object sinks if the object's weight is greater than the buoyant force.
A marble sinks because its weight is more than the buoyant force.
The Magic Ice Cube
Trial 1: Ice Cube in water
Trial 2: Watch as I place a second ice cube in another beaker What happened?



| 1. Find the density of a substance with a mass of 5 kg <br> and a volume of $43 \mathrm{~m}^{3}$ | 2. Suppose you have a lead ball with a mass of 454 g. <br> What is its volume? (density of lead is: $11.35 \mathrm{~g} / \mathrm{cm}^{3}$ ) |
| :--- | :--- |
|  |  |
| 3. What is the mass of a 15 mL sample of mercury? <br> (density of mercury is: $13.55 \mathrm{~g} / \mathrm{cm}^{3}$ ) | 4. A block of pine wood has a mass of 120 g and a <br> volume of $300 \mathrm{~cm}^{3}$. What is the density of wood? |
|  |  |

