Teach a parent : Chapter review:

Explain what a valence electron is AND how they are involved with the bonding process. Use the periodic table to show your folks how many electrons are available for bonding.

meip your parent become an expert:
Be sure they write what they have learned from your teaching
Parent Response
1 I'm not sure my child really understands, therefore, I don't either. Please work with
him/her and let's try again.
2 The concept was explained thoroughly with effective examples he/she created.
"By golly, I think they've got it!"
3 WOW! My child did an exceptional job! It was logically explained, therefore I caught on
immediately and feel confident about teaching it to others.
Parent Signature: Date:
Today's concept is in 3 parts:
Explain the different types of bonding:
1. Covalent 2. Ionic 3. Metallic
AND Explain HOW each bond takes place.
Help your parent become an expert!
Be sure they write what they have learned from your teaching
Parent Response
1 I'm not sure my child really understands, therefore, I don't either. Please work with
him/her and let's try again.
2 The concept was explained thoroughly with effective examples he/she created.
"By golly, I think they've got it!"
3 WOW! My child did an exceptional job! It was logically explained, therefore I caught on
immediately and feel confident about teaching it to others.
Parent Signature: Date:
THE IC ECCENTIAL FOR THE CREDIT.
THIS IS ESSENTIAL FOR FULL CREDIT: Mom or Dad Comments: Please explain how your student taught you this concep
and * what you learned in 3-5 sentences! * This is critical for them to receive full point.
This is children to receive full points

pg 16

Chp 14: Chemical Bonding
Complete the oxidation numbers for this chart

		Most		non oxid mber	lation						
1a											8a
	2a					3a	4a	5a	6a	7a	
3b-12b			mily	amily	amily	Alima	SI	ases			
Alkali metals	Alkaline –Eartl	Transition Metals		Boron Family	Carbon Family	Nitrogen Family	Oxygen Family	Halogens	Noble Gase		

Name:	Pd		
Parent's signature of completion			

Definitions: From the Book / or YOUR definition

Pg found	Sect 1: Electrons & chemical bonding 352-355
Chemical bonding	
Chemical bond	
** 1	
Valence electrons	
	Sect 2: Types of Chemical Bonds Pg 356-365
Ionic bond	Sect 2. Types of Chemical Bonus 1 g 330-303
ions	
Ct-1	
Crystal lattice	
Covalent bond	
molecule	
Metallic bond	

	Covalent Bonds	(page 360)
· A covalent bo	ond is the force of attracti	ion between the nuclei of atoms &
the electrons	by the	atoms.
		oo much energy is required for either
atom to lose a	n electron, so	_ ions are formed.
		electrons to complete their
		atoms bond by sharing electrons
with one anot	ner.	
	nded Atoms Make U	
		group of atoms held together b
	bonds.	
A Molecule is	the	Particle of a
	Compo	
The Simplest I	Molecules	
_		molecules,
_	atoms bonded together.	
	· ·	,,
Examples	·	,,
More Complex	r Malagulas	
More-Complex		er avan protains in the
calls of your h	oody are examples of com	, & even proteins in the
•	•	of many of these complex molecule
	atoms are the basis	of many of these complex molecule
Metallic Bor	ids (page 363)	
		on between a positively charged
71 metame bo	& the	in a metal.
		Throughout a Metal
	_	another that their outermost energy
		e electrons to move throughout the
	e energy level of one ator	n to the energy levels of the atoms
nearby.): d
		ns) in the metal are
		al as being made up of positive meta
	o cancel the charge of the	vimming" about to keep the ions e ions,
-	etallic Properties	,
		because the metal stoms are
closely packet	d Rut hecause the atoms	because the metal atoms are can be rearranged, metals can be
• •	into useful forms.	can be rearranged, inclais can be
	Pg 15	
	1 5 13	

Section 2: Types of Chemical Bonds (page 356)

Io	nic Bonds (page 3. An ionic bond is the fo	56) orce of attraction between oppositely		1.A scientist discovered superglue by accider develop?
•	more valence electrons	les that form during chemical changes who	another.	2. When superglue is applied, it combines wit
At		Electrons Form		to form
•		ctrons form ions that have fewer electrons		Section 1: Electrons & Chemical Bonding (p
		harges outnumber the negative charges in formed when atoms lose electrons have an		3. Chemical is the joining substances. The of the
•		nave electrons in their outer energ	gy level.	from those of the ori
,		d with other atoms, the metal atoms tend t ese valence electrons and form positive ior		attraction that holds two atoms together is
Th	e Energy of Losing	Electrons		4. True or False: An atom's electrons are or
•	Removing electrons from	ount of energy, so metal atoms lose electro	ns	shells. The energy levels farther from the have more energy than electrons that are
•	Groups 1 & 2 is so low	led to remove electrons from atoms of eler that these elements react very easily & ca		5. True or False: Valence electrons are the energy level.
	only as	in nature.		6. Look at figure 3 on page 354. What are the
At	oms that	Electrons Form	Ions	valence electrons?
•	ions that have more ele	ons from other atoms during chemical reac ctrons than protons. The negative charges ving each of these ions an overall negative	outnumber	a. Groups 1 & 2:
•		re needed to fill the outer level, so atoms on to electrons from o		b. Groups 3-12:
Th	e Energy of Gainir	g Electrons		
•	The more easily an a	tom gains an electron, the more n atom gives off.		c. Groups 13-18:
Ior	ns Bond to Form a			
•		an ionic compound are bonded in a repeati	ng 3D	
	pattern called a crystal	lattice.		7. Read the last paragraph on page 354.
•		ich as, the ions ir		Do the noble gases form bonds? Why
	crystal lattice are arran a solid.	ged as alternating positive & negative ions	s, torming	
		n every side by an ion with the opposite ch	arge.	

Pg 14

Strange but True! (page 350) nt. What was he trying to th _____ from the p 352-355) of atoms to form new hese new substances are iginal elements. A force of is called a rganized in energy levels or nucleus contain electrons that closer. electrons in an atom's innermost e 3 hints for determining the # c or why not?

Therefore, the outermost energy level of an atom is considered full if it

Pg 3

contains ______ electrons.

8. Which of the following does NOT describe how atoms can fill their outermost energy level?
a. by sharing electrons with other atomsb. by losing electrons to other atomsc. by gaining electrons from other atomsd. by gaining kinetic energy from other atoms
9. Why is a helium atom stable with only 2 electrons in its outermost energy level?
10. Copy the figure of fluorine (on the bottom of page 355) in the box →
Will fluorine form bonds? Explain:
Additional Section Notes:
ng 4

Chapter 14 Outline – Chemical Bonding

Section 1: Electrons & Chemical Bonding (page 352)

4.	Atoms Combine through Chemical Bonding (page 352)
	· Chemical is the joining of atoms to form
	substances. The properties of these new substances are
	from those of the elements.
	· A force of attraction that holds two atoms together is called a chemical
	bond chemical bonds involve the in the atoms.
5.	Electron Number & Organization (page 352)
	• The 1 st energy level is the closest to the nucleus & can hold up to electrons.
	• Electrons will enter the 2 nd energy level only after the first level is
	The 2 nd energy level can hold up to electrons.
	• The 3 rd energy level can hold up to electrons.
	Outer-Level Electrons are the to
	· Most atoms form bonds using only the electrons in their outermost
	energy level calledelectrons.
	Valence Electrons & the Periodic Table
	· Elements in a group often have similar, including the
	number of electrons in the outermost energy level of their atoms. The
	number of valence electrons for many elements is related to the
	number.
6.	To Bond or Not to Bond (page 354)
	· Atoms of the, or inert, gases (group) do not
	normally form chemical bonds.
	· The outermost energy level of an atom is considered to be if it
	contains electrons.
	Atoms Bond to Have aOutermost Level
	· An atom that has than 8 valence electrons is
	reactive, or more likely to form bonds, than an atom with 8 valence
	electrons.
	· Atoms bond by,, or
	electrons in order to have a filled outermost energy
	level with 8 valence electrons.

Drawing Ionia Randings	
Drawing Ionic Bonding: Ionic bonding occurs when a	transfers 1 or more electrons to a in
	t of electrons. Complete these examples below:
1. K + F	
2. Na + O	
3. Mg + I	
Drawing Covalent Bonding:	CHADE design of the second
	SHARE electrons, attempting
1. $H + H \rightarrow H_2$	ons. Complete these examples below:
1. 11 + 11 -> 112	
1. 11 + 11 -> 112	
$\frac{1. \text{ II} + \text{ II} > \text{ II}_2}{2. \text{ O} + \text{ O} -> \text{ O}_2}$	
_	
2. O + O -> O ₂	
_	
2. O + O -> O ₂	
2. O + O -> O ₂	
$2. O + O -> O_2$ $3. C + O_2 -> CO_2$	following compounds as ionic (+)
$2. O + O \rightarrow O_2$ $3. C + O_2 \rightarrow CO_2$ Types of bonds: Classify the fi	following compounds as ionic (+) or metallic (+)
$2. O + O -> O_2$ $3. C + O_2 -> CO_2$ Types of bonds: Classify the for covalent (+ 1. CaCl ₂ 4	· · · · · · · · · · · · · · · · · · ·

Electrons, Shells & Ions: complete the boxes below

6. NO₂

3. H₂O

Atom	Total	Valence	Electrons	Oxidation	Ion	Lewis
	Electrons	Electrons	Lost or	Number		Dot Structure
			Gained?			
Sodium						
Fluorine						
Nitrogen						
Argon						
Carbon						

9. Cu₂

Section 2: Types of Chemical Bonds (n.356-365)

chargedduring chemic	bond is the force Ions are _ cal changes whe one atom to ano	n one or n	particl	les that form
3. In an ionic bo following:	nd, electrons are	e either los	st or gained. Co	omplete the
f an atom loses e	lectrons, it form	s		ions.
f an atom gains e	lectrons, it form	ıs		ions.
4. Look at figure	s 6 & 7 on pages ?	357 & 358,		information belo
Sodium Atom 11+ protons 11- electrons 0 charge	Sodium (Na ⁺) 11+ protons 10- electrons 1+ charge	Forming Positive Ions	Aluminum Atom 13+ 13- electrons 0 charge	Aluminum Ion (Al ⁺³) 13+ protons 10- electrons charge
Chlorine Atom 17+ 17- electrons 0 charge	Chlorine ions (Cl') 17+ protons 18- 1- charge	Forming Ions	Oxygen Atom 8+ protons 8- electronscharge	Oxygen Ion () 8+ protons 10- electronscharge
5. The ions that in-dimensional pat ompounds, such lternating positive ordered on every	tern called a as table salt, the e and negative it side by an ion	e ions in the	e crystal lattic	In ionic e are arranged a Each ion charge.

- 18. True or False: A molecule is a neutral group of atoms held together by covalent bonds.

19. Look at figure 12 on page, then draw both types of a water molecule Pg answer Fill in the Blank Review Questions: found on in the boxes below. are formed, electrons are transferred between atoms 1. When Water Molecule Lewis Electron-Dot 2. Atoms covalently bonded together form a 3. Charged particles that form when atoms transfer electrons are called Diagram 4. A is a three-dimensional pattern formed from alternating positive and negative ions. Pg answer found on d. electrons in the outermost energy level a. metal b. metalloid c. nonmetal 20. What does an electron-dot diagram show & why is it helpful? a. oxvgen b. argon c. nitrogen 10. are formed by atoms losing electrons: 21. All molecules are composed of at least two covalently bonded atoms. The simplest molecules, known as _____ molecules, consist of 2 atoms bonded together. Some elements are called diatomic a. a hard and brittle texture b. high density elements because they are found in nature as diatomic molecules composed of the two atoms of the element. 22. Why is it that metals are malleable and can bend? Because they have a special type of bond called a metallic bond. A metallic bond is the force an ion with a 2⁻ charge? of attraction between a charged metal ion and the a. The atom gains 2 protons. in a metal. Many properties of metals, such as c. The atom gains 2 electrons. conductivity, ductility, and malleability result from the freely moving electrons in the metal. of bonds? a. ionic b. covalent c. metallic Additional notes: easily gain electrons? a. across the top two rows c. on the right side d. on the left side a. metal b. metalloid c. nonmetal

5. A force of attraction that holds two atoms together is called Multiple Choice (we will be grading these) Circle your choice 6. The number of is most important in determining how an atom will bond a. protons b. neutrons c. electrons in the innermost energy level 7. Which type of element is most likely to gain electrons when it forms bonds? d. noble gas 8. Why do atoms have no charge (so they are neutral)? a. The number of protons is equal to the number of neutrons. b. The number of electrons is equal to the number of neutrons. c. The number of protons is equal to the number of electrons. d. There is an equal number of neutrons, protons, and electrons. 9. Which of the following elements does not exist as a diatomic molecule? d. iodine a. Negative ions b. Positive ions c. Elements d. Compounds 11. Which of the following is NOT a metallic property? c. the ability to be flattened and shaped d. the ability to conduct electricity 12. Which element has a full outermost energy level containing only two electrons? a. oxygen (O) b. hydrogen (H) c. fluorine (F) d. helium (He) 13. Which of the following describes what happens when an atom becomes b. The atom loses 2 protons. d. The atom loses 2 electrons. 14. The properties of ductility and malleability are associated with which type d. None of these 15. In which area of the periodic table do you find elements whose atoms b. across the bottom row 16. What type of element tends to lose electrons when it forms bonds? d. noble gas 17. Which pair of atoms can form an ionic bond? a. sodium (Na) and potassium (K) b. potassium (K) and fluorine (F) c. fluorine (F) and chlorine (Cl) d. sodium (Na) and neon (Ne)

Chapter 14 Vocab Review

Chemical Bond:	
3 Types of Chemical Bonds	
Chemical Bonds	
Forms Ions Creates a repeating 3D pattern called a crystal lattice Forms Molecules	
Definition: Definition:	
	′
Additional Notes:	

Pg 10

Lewis Dot Structures

Lewis dot diagrams are a simplified way to show how the electrons are arranged in their outer shell. These are the valence electrons. This is where the chemical bonding & reactions take place. Here are the steps to drawing Lewis dot structure:

Example: Draw the Lewis dot structure for Nitrogen

1. Write the element symbol. N

2. Determine the # of valence electrons. 5

3. Draw that # of dots around the symbol!

Draw the Lewis structures for each of the elements below:

н	Al	В	Ne	Kr
СІ	F	Ga	S	Li
с	Cs	He	Sr	Р
Ве	Si	Ва	Мд	As
К	Na	Ar	Br	0

Ionic Bonding Basics

Element	# of Electrons	# of Valence Electrons	# of electrons gained or lost	Oxidation #
Sodium				
Chlorine				
Calcium				
Fluorine				
Aluminum				
Oxygen				
Potassium				

Use the following rules & your teacher's directions to draw each ionic compound:

١.	Write	the	symb	ol for	each	element.

- Use _______ to create each Lewis structure.
- 3. Draw an arrow(s) to show the transfer of electrons and move the dots to the new location.
- 4. Decide if you need additional elements.
- 5. Determine the charge for each ion and write the formula.
- 6. Make sure the sum of the oxidation numbers is zero & write the chemical formula.
- 7. Use crayons or colored pencils to color in the electrons once you remove them.

(1) Potassium + Fluorine	(2) Magnesium + Iodine	(3) Sodium + Oxygen
(4) Sodium + Chlorine	(5) Calcium + Chlorine	(6) Aluminum + Chlorine

-Pg 8-

ELECTRONS, SHELLS, AND IONS, OH MY!

Electron Math: So, you think you know electrons huh? Prove it! Follow the example below to complete the table. For each Lewis drawing, if an atom loses an electron, cross it out with a red pen/colored pencil. If an atom gains an electron, draw a green dot where it should be.

Atom	Total Electrons	Valence Electrons	Electrons gained or lost?	Oxidation Number	Ion	Lewis Dot Structure
Sodium	11	1	Wants to lose 1	1+	Na+	Nax
Fluorine	9	7	Wants to gain 1	1-	F-	:Ë:
Nitrogen						
Chlorine						
Silicon						
Carbon						
Neon						
Magnesium						

Additional Notes:					

pg 9